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1. Introduction 

In the “new normal” society with the need to save 
labor and increase the separation among workers, 
humans and machines may more often coexist. Currently, 
the workspace of humans is usually separated from that 
of machines to ensure safety. To improve efficiency, 
however, humans and machines will need to work 
together in the future. Accordingly, Mitsubishi Electric 
Corporation has developed, using its AI technology 
Maisart, cooperative AI for human–machine work that 
makes it easier for machines to work together with 
humans by imitating the natural behavior of humans. The 
technology uses inverse reinforcement learning to attain 
efficient learning with small data sets. This paper 
introduces the cooperative AI for human–machine work 
using the example of applying the technology to a small 
autonomous mobile system. 

 
2. Outline of the Technology 

 
2.1 Overview 

Figure 1 illustrates an overview of the proposed 
technology. The manipulation data of cooperative 

actions performed by a human is imitated through 
inverse reinforcement learning (2.2), which realizes 
natural cooperative actions. Because the process of trial 
and error needs to be repeated in this approach, a 
simulation environment that mimics the actual 
environment needs to be prepared. The sensor data 
output from the simulator and actual machine needs to 
be appropriately processed in advance to convert it to an 
easy-to-learn format. In addition, to control actual 
machines, a control cycle and method that are suitable 
for each machine need to be adopted. Generally, 
autonomous mobile systems require movement control 
in a cycle of several milliseconds. However, when 
determining routes approximately, control in cycles of 
100 to several hundred milliseconds is sufficient. For 
these reasons, functions are divided into several 
modules: a top-down view generator and feature 
extraction network that pre-process the input data; a 
learner and trained model that determine approximate 
target actions; and a control module that performs fine 
control. This makes it possible to perform both high-
speed smooth control and make difficult judgments in 
actual environments. Each module is explained below. 

Fig. 1 Overview of the proposed framework 
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2.2 Learner (inverse reinforcement learning) 
When multiple persons (or machines that humans 

operate) work in the same environment, operators see the 
movements of other operators or machines and adjust the 
speed and sequence of their own operations, ensuring the 
safety of all operators as well as efficiency. Therefore, in 
an environment where humans coexist with automated 
guided vehicles (AGVs) and other machines, the 
machines should give way to humans or move slowly. 
Currently, however, because machines move based on 
predetermined rules such as “advance” and “stop when 
detecting an obstacle,” the operation efficiency of both 
sides may decrease, for example, when both the machine 
and operator cannot move. One possible solution would 
be to give desired action rules for possible events, but it is 
difficult to list up all rules. Accordingly, we used AI to make 
machines cooperate with humans. One approach using AI 
is reinforcement learning for which it is necessary to 
design a function called a reward function that indicates 
whether the response to a status is good or bad. However, 
in autonomous mobile system control in which the 
surrounding environment changes in a complex manner, 
it is difficult to design such reward functions. Another 
technique is called imitation learning, in which behavior is 
learned such that it becomes similar to a sample action 
and for which no reward function is designed. There are 
multiple methods of imitation learning. One method, which 
uses sample data (demonstration data) to learn behavior 
in supervised learning, requires a large volume of 
demonstration data. This is because for statuses that are 
not included in the training data, appropriate behavior 
cannot be determined and so errors that may occur during 
the control need to also be considered and data sets that 
include these errors need to be prepared. Another 
method is inverse reinforcement learning. In this method, 
based on demonstration data, machines estimate 
reward functions by repeating trial and error through 
simulation and then use the estimated reward functions 
to perform reinforcement learning. Generative 
adversarial imitation learning (GAIL)(1), which is one type 
of inverse reinforcement learning, learns the optimum 
behavior in accordance with the procedure of generative 
adversarial networks (GANs).(2) It has been reported that 
this method requires fewer demonstration data sets for 
learning than supervised learning. For this reason, our 
technology uses GAIL. 

 
2.3 Top-down view generator and feature 

extraction network 
Mobile system control using AI often involves image 

input. One reason is that images can easily show the 
positional relationships between multiple objects in an 
environment where the statuses of a target car and 
surrounding objects constantly change. However, the 
obtained images usually contain information that is 

unrelated to deciding the behavior of the target car. In 
addition, if a simulator is used for learning, differences 
between images used in the learning and actual images 
in actual control cause problems. Therefore, a top-down 
view generator is used to convert information obtained 
by the simulator and actual machine into virtual images. 
This reduces differences between the actual 
environment and simulation environment while cutting 
unnecessary information. At present, top-down views 
are used to simply express the positional relationships 
between the target car and surrounding objects. 
Although information on the surroundings can be 
obtained by top-down views, the number of dimensions 
of image data is large, which may adversely affect the 
speed and stability of learning. To solve this problem, a 
feature extraction network is introduced to compress the 
obtained top-down views to extract lower-dimensional 
feature values. In our technology, a variational 
autoencoder (VAE) is used to convert views into lower-
dimensional vectors. By creating a large quantity of 
various types of artificial top-down views, feature 
extraction network learning can be completed before 
inverse reinforcement learning. The final input data is a 
combination of the feature values extracted from top-
down views with information on the speed and other 
factors that is not included in the top-down views. 

 
3. Application to a Small Mobile System 

 
3.1 Scenarios 

We applied this technology to a small autonomous 
mobile system imitating an AGV in an experiment; the 
results are shown below. Figure 2 shows the 
experimental scenario. The target AGV travels in a 
straight line to the right along the thick solid line in the 
figure. It aims to reach the right end as fast as possible 
without colliding with or hindering the forklift. The forklift 
retreats so as to cross the travel route of the AGV, 
changes direction, and then travels to the right as shown 
by the broken lines in the figure. Therefore, if the AGV 
travels according to the rules of “advance” and “stop 
when detecting an obstacle,” it will collide with the forklift 
or both the AGV and forklift will stop in front of each other 
depending on the timing when the forklift retreats (Fig. 3). 
In this experiment, two patterns were provided as the 
timing when the forklift edges into the travel route of the 
AGV: (a) a sudden interrupt that forces the AGV to 
retreat and (b) a slow interrupt that does not require the 
AGV to retreat. The two scenarios were mixed for 
learning and evaluation. The time at which the AGV and 
forklift started and their start positions were slightly 
changed every time. 

 
3.2 Learning using a simulator 

We used a simulator that we had developed in the 
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learning of cooperative actions for the scenarios 
described in the previous section. The target of a top-
down view is a square area of side 1 m with the target 
car at the center; binary images with only another vehicle 
included were used. The feature extraction network was 
used to convert a top-down view to 16-dimensional 
vectors and the speed of the target car was added to 
them. Therefore, the input data has a total of 17-
dimensional vectors. Demonstration data was collected 
when a human operated the AGV on the simulator for 
each of scenarios (a) and (b). Inverse reinforcement 
learning and supervised learning were performed and 
the scores were calculated based on whether the AGV 
collided with the forklift and the time required to complete 
the operation and compared. As a result, although 

limited to the scenarios used this time, when four or more 
demonstration data sets were available for each of 
scenarios (a) and (b) in the inverse reinforcement 
learning, the obtained scores were the same or higher 
than those of humans. On the other hand, in the 
supervised learning, even when the number of 
demonstration data sets used was ten or more times 
those used in the inverse reinforcement learning, the 
scores of the supervised learning were lower than those 
obtained in the inverse reinforcement learning and they 
also widely varied. These results confirm that our 
proposed technology is superior to supervised learning 
for the number of required data sets, as well as safety, 
efficiency, and stability of operations. 

 

Fig. 2 Experimental scenario 

Target 
AGV 

Forklift 
(Operated by 

a human) 

Fig. 3 An example of a scene that requires 
cooperative motion 

 

The AGV needs 
to retreat to give 

way to the forklift. 

(a) The cooperative AI for human–machine work was not applied. 

(b) The cooperative AI for human–machine work was applied. 

Fig. 4 Real-world experiments with cooperative AI 

Because the forklift 
entered the critical 
region, the AGV 

stopped urgently. 

The AGV gave way to the 
forklift, which allowed the 

forklift to move without delay. 
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3.3 Experiment using actual machines 
Lastly, the results of an experiment using actual 

machines are shown below. As shown in Fig. 4, in the 
experiment, the AGV, forklift, and surrounding objects 
used are the same as those in the simulation 
environment shown in Fig. 2. A model trained with 20 
demonstration data sets was applied to the target AGV 
without additional learning and adjustment. When the 
AGV moved according to the rules of “advance” and 
“stop when detecting an obstacle,” at the moment when 
the forklift entered its critical region, the AGV stopped 
urgently, which resulted in operation time loss (Fig. 4(a)). 
On the other hand, when our technology was applied, 
the AGV retreated to give way to the forklift, which 
allowed the forklift to travel without delay. These results 
show that our technology contributes to realizing smooth 
operations (Fig. 4(b)). 

 
4. Conclusion 

When the cooperative AI for human–machine work 
was used, natural behavior was obtained with fewer 
demonstration data sets thanks to the inverse 
reinforcement learning. In addition, combining the 
cooperative AI with a top-down view generator and 
feature extraction network realized cooperative actions 
of the actual machine. We will keep working on 
development toward applying the technology to actual 
production and distribution sites where humans and 
machines may coexist and to autonomous driving. 
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