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TECHNICAL REPORTS

*Kotaro Katsuyama is with the Information Technology R&D Center

Overview
The Current State of Encryption Technology

by Kotaro Katsuyama*

With advances in the Internet, progress in mobile phones and other mo-
bile communications devices, and with similar developments taking place in
digital electrical equipment for the home and in sensors, we are entering the
era of the ubiquitous network. While this offers society the prospect of great
convenience, enabling the almost instantaneous exchange of large volumes of
electronic data, the facts that everything will be connected to the same net-
work and communications will be possible from any one point to any other
within the network pose new threats of eavesdropping, tampering, imperson-
ation and breaches of security. These threats are making the technology for
ensuring the security of information, particularly encryption technology, in-
creasingly important. Mitsubishi Electric possesses world-class technologies in
this area: our MISTY encryption technology is used in the KASUMI algorithm
adopted for third-generation mobile phone systems and for GSM. The corpora-
tion also provides a number of advanced security solutions that make major
contributions to the safety and security of the social infrastructure.

This issue of Advance introduces the corporation’s MISTY, Camellia and
KASUMI encryption algorithms, along with the technologies for evaluating the
degree of security provided, and for implementing these algorithms. The tamper-
proof TURBOMISTY secure boards are also introduced. Finally, there is an ar-
ticle that outlines the corporation’s work directed at future applications of
quantum cryptography. ❑



TECHNICAL REPORTS

Mitsubishi Electric ADVANCE2 ·

*Mitsuru Matsui and Toshio Tokita are with the Information Technology R&D Center

by Mitsuru Matsui and Toshio Tokita*

MISTY, KASUMI and Camellia Cipher
Algorithm Development

This article introduces three symmetric key
block-cipher algorithms, MISTY, KASUMI, and
Camellia, designed based on cipher evaluation
techniques developed by Mitsubishi Electric
Corp. MISTY and Camellia are designed for both
high security and high speed/small size pur-
poses. KASUMI is a cipher based on MISTY, and
has recently been adopted as the standard ci-
pher for mobile telephones in Europe.

MISTY and the Design Intent Behind it
MISTY is the family name for two 64-bit block-
cipher algorithms, MISTY1 and MISTY2, that
have 128-bit keys, designed by the corporation
with detailed specifications announced in aca-
demic conferences in 1996 and 1997.[1] [2]

In terms of security, MISTY has the major
benefit of “provable security,” in which the se-
curity is proven mathematically against differ-
ential cryptanalysis and linear cryptanalysis,
which are extremely powerful methods for

Fig. 1. The Camellia block-cipher algorithm

Subkey

Camellia for 128-bit Keys
Secret key (128-bit) Plaintext (128-bit)

SubkeySubkey

S1

S1

S3

S2

S4

S3

S2

S4

Bytewise
Linear
Trans.

Si : Substitution-box

Ciphertext (128-bit)
Copyright (C) NTT & Mitsubishi Electric Corp. 2001

En/Decryption
Procedure

R
o

ta
tio

n
 &

 C
h

o
ic

e

Key Schedule

In
te

rm
e

d
ia

te
 K

e
ys

 G
e

n
e

ra
tio

n

F

F

F

F

F

F

FL FL

breaking block ciphers. Through its use of the
new round-function and recursive structures,
MISTY is able to provide provable security while
at the same time providing increased speed en-
abled by a heightened level of parallelism in
internal components.

One major benefit of MISTY is that it is de-
ployed in hardware. At the time, most ciphers
were envisioned as being implemented in soft-
ware, and as a result the hardware became ex-
tremely large, for otherwise, when implemented
in software, there would be little hope for in-
creases in speed. In contrast, the structure of
the overall algorithm in MISTY uses logical func-
tions and table-lookup procedures only, meaning
that the resulting structure can be implemented
aggressively using hardware characteristics,
such as optimizing the structures of the tables
for implementation in hardware.

The MISTY1 and MISTY2 specifications sup-
port a variable number of rounds (up to any
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multiples of four); for MISTY1, eight rounds is
recommended and for MISTY2, twelve rounds.
At present, most implementations of MISTY1
use an eight-round version, and in the descrip-
tion below, any references to “MISTY” refers to
the eight-round version of MISTY1, unless oth-
erwise noted.

MISTY Today
MISTY has won a large number of users since
its announcement. Along with the use of MISTY
in a variety of software products for general use
(such as an encryption library (PowerMISTY),
file encryption (CryptoDoc), and email encryp-
tion (CryptoSign)), the corporation has also used
MISTY in many governmental systems.

In terms of security, MISTY has been scruti-
nized by many researchers since its announce-
ment. The reliability of an encryption method
can only be established through the cumulative
effect of third-party evaluations. According to a
report by CRYPTREC, the Cryptography Re-
search & Evaluation Committees for Japanese
“e-government,” at present there are no prob-
lems with the security of the 8-round MISTY1.[3]

KASUMI and its History
The 3GPP consortium, which discusses the tech-
nical standards for third-generation mobile tele-
phone (W-CDMA) comprises the communication
standards bodies from Europe, Japan, the United
States, Korea, and China, and as part of this con-
sortium, the SA-WG2 is a working group com-
missioned to establish standards for security
architecture. Up to now, various communica-
tions ciphering methods used in Europe, includ-
ing an encryption algorithm for second-
generation mobile telephones, have been
designed by the Security Algorithms Group of
Experts (SAGE) as part of the European Telecom-
munications Standards Institute (ETSI), which
is a 3GPP member, and the SA-WG2, reviewing
these methods, requested SAGE to design the
ciphering algorithm for the third-generation
mobile telephone.

Having received this commission, SAGE set
to work at designing the cipher, but because of
factors such as the tight deadline for the devel-
opment, SAGE decided to perform its develop-
ment work based on an existing cipher, for which
it selected MISTY1. The reason for adopting
MISTY1 was not just its high level of security;
the deciding factor was rather that MISTY1 was

essentially the only block cipher that had been
implemented at the time that fulfilled the re-
quired specification from the 3GPP side that it
could be built in hardware using no more than
10K gates.

This 64-bit block cipher with a 128-bit key,
designed based on MISTY1 was dubbed “KASU-
MI,” the Japanese word for “misty,” and was
certified formally as the mandatory cipher in W-
CDMA in January of 2000.

The Scope of W-CDMA Cipher Standards
The use of KASUMI as the mandatory standard
is due to two mechanisms: the confidentiality
and the integrity of its transport layer. When it
comes to authentication, although each carrier
may use a different method, the recommended
(though not mandatory) method was, of course,
designed by SAGE.

KASUMI is a variant of MISTY1 customized
further for hardware, designed based on the as-
sumption that it will be implemented in hard-
ware (LSI circuits).

The KASUMI specifications have been pub-
licly disclosed, and can be downloaded from the
3GPP home page.[4] Along with its widespread
use in third-generation portable telephones in
the future, KASUMI will find uses throughout
the world. In July of 2002, GSM, the current gen-
eration of mobile telephone system in Europe,
also made the decision to adopt KASUMI.

Camellia and the Design Intent Behind it.
Camellia is a new block-cipher algorithm devel-
oped jointly between NTT and Mitsubishi Elec-
tric in the year 2000. It was created by combining
the world-class cipher strength evaluation tech-
nologies and cipher implementation technolo-
gies possessed by the two firms. The block size
was set at 128 bits, twice that of MISTY and
KASUMI.[5][6] The cipher supports three types of
keys, 128-bit keys, 192-bit keys, and 256-bit keys.

Camellia, from the perspective of security, was
not only designed to be resistant to the newest
cryptanalysis methods including differential
cryptanalysis, linear cryptanalysis, and beyond,
but was also designed with a large safety mar-
gin in view of anticipated future progress in
cryptanalysis techniques. Furthermore, in con-
sideration of the broadening range of applications
of ciphers in the recent past, Camellia has been
designed so that it can be applied to all types of
encryption platforms, enabling small/low-power
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applications in hardware for, for example, por-
table devices, and suitable for applications rang-
ing from environments with extremely limited
resources (such as IC cards) to the newest high-
speed 64-bit processors.

Structural  Features of Camellia
Similar to MISTY and KASUMI, Camellia is
structured with only table lookup and logical
operations, and thus it does not use any arith-
metic operations, a structure adopted with the
performance when implemented in hardware in
mind. On the other hand, Camellia differs from
MISTY and KASUMI in that the entire algorithm
is structured with only byte- (or word-) unit op-
erations, allowing high performance when imple-
mented in software, regardless of the type of
processor.

Camellia has been submitted to standardiza-
tion in ISO, NESSIE, and the like, and the re-
sults of many third-party evaluations of its
security are known. The CRYPTREC report also
states that, at this time, there are no problems
with the security of Camellia.[3] Camellia is ex-
pected to go into widespread use as a next-gen-
eration cipher. More information about the
performance of Camellia is available on the Ca-
mellia web site at http://info.isl.ntt.co.jp/camel-
lia.

This article has described the block-cipher algo-
rithms, MISTY, KASUMI, and Camellia. Ap-
pended to the article is a CBC-mode sample
program for MISTY1, written in the C language.
This program was designed with portability in
mind, and thus will work on most ANSI-C com-
pilers. ❑
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/*********************************************************************
 A Sample Program of MISTY1 Block Encryption Algorithm in CBC mode

 Key Scheduling P_Misty1_Keysch( key, ekey )
 Encryption P_Misty1_Cbcenc( pdat, cdat, ivec, ekey, block )
 Decryption P_Misty1_Cbcdec( cdat, pdat, ivec, ekey, block )

     key address of encryption key (16 bytes)
     ekey address of subkey (sizeof(Uint) * 32 bytes)
     pdat address of plaintext data (block * 8 bytes)
     cdat address of ciphertext data (block * 8 bytes)
     ivec address of initial vector (8 bytes)
     block the number of data blocks

     Copyright (c) 2002 Mitsubishi Electric Corporation
*********************************************************************/

typedef unsigned char UInt8;
typedef unsigned int UInt; /* also works for short and long */

static const UInt S7[128] = {
 27, 50, 51, 90, 59, 16, 23, 84, 91, 26,114,115,107, 44,102, 73,
 31, 36, 19,108, 55, 46, 63, 74, 93, 15, 64, 86, 37, 81, 28, 4,
 11, 70, 32, 13,123, 53, 68, 66, 43, 30, 65, 20, 75,121, 21,111,
 14, 85, 9, 54,116, 12,103, 83, 40, 10,126, 56, 2, 7, 96, 41,
 25, 18,101, 47, 48, 57, 8,104, 95,120, 42, 76,100, 69,117, 61,
 89, 72, 3, 87,124, 79, 98, 60, 29, 33, 94, 39,106,112, 77, 58,
 1,109,110, 99, 24,119, 35, 5, 38,118, 0, 49, 45,122,127, 97,
 80, 34, 17, 6, 71, 22, 82, 78,113, 62,105, 67, 52, 92, 88,125 };

static const UInt S9[512] = {
451,203,339,415,483,233,251, 53,385,185,279,491,307, 9, 45,211,
199,330, 55,126,235,356,403,472,163,286, 85, 44, 29,418,355,280,
331,338,466, 15, 43, 48,314,229,273,312,398, 99,227,200,500, 27,
1,157,248,416,365,499, 28,326,125,209,130,490,387,301,244,414,
467,221,482,296,480,236, 89,145, 17,303, 38,220,176,396,271,503,
231,364,182,249,216,337,257,332,259,184,340,299,430, 23,113, 12,
71, 88,127,420,308,297,132,349,413,434,419, 72,124, 81,458, 35,
317,423,357, 59, 66,218,402,206,193,107,159,497,300,388,250,406,
481,361,381, 49,384,266,148,474,390,318,284, 96,373,463,103,281,
101,104,153,336, 8, 7,380,183, 36, 25,222,295,219,228,425, 82,
265,144,412,449, 40,435,309,362,374,223,485,392,197,366,478,433,
195,479, 54,238,494,240,147, 73,154,438,105,129,293, 11, 94,180,
329,455,372, 62,315,439,142,454,174, 16,149,495, 78,242,509,133,
253,246,160,367,131,138,342,155,316,263,359,152,464,489, 3,510,
189,290,137,210,399, 18, 51,106,322,237,368,283,226,335,344,305,
327, 93,275,461,121,353,421,377,158,436,204, 34,306, 26,232, 4,
391,493,407, 57,447,471, 39,395,198,156,208,334,108, 52,498,110,
202, 37,186,401,254, 19,262, 47,429,370,475,192,267,470,245,492,
269,118,276,427,117,268,484,345, 84,287, 75,196,446,247, 41,164,
14,496,119, 77,378,134,139,179,369,191,270,260,151,347,352,360,
215,187,102,462,252,146,453,111, 22, 74,161,313,175,241,400, 10,
426,323,379, 86,397,358,212,507,333,404,410,135,504,291,167,440,
321, 60,505,320, 42,341,282,417,408,213,294,431, 97,302,343,476,
114,394,170,150,277,239, 69,123,141,325, 83, 95,376,178, 46, 32,
469, 63,457,487,428, 68, 56, 20,177,363,171,181, 90,386,456,468,
24,375,100,207,109,256,409,304,346, 5,288,443,445,224, 79,214,
319,452,298, 21, 6,255,411,166, 67,136, 80,351,488,289,115,382,
188,194,201,371,393,501,116,460,486,424,405, 31, 65, 13,442, 50,
61,465,128,168, 87,441,354,328,217,261, 98,122, 33,511,274,264,
448,169,285,432,422,205,243, 92,258, 91,473,324,502,173,165, 58,
459,310,383, 70,225, 30,477,230,311,506,389,140,143, 64,437,190,
120, 0,172,272,350,292, 2,444,162,234,112,508,278,348, 76,450 };
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#define FL_enc( k ){\
r1 ^= r0 & ekey[0+((k+0)&7)];\
r3 ^= r2 & ekey[8+((k+2)&7)];\
r0 ^= r1 | ekey[8+((k+6)&7)];\
r2 ^= r3 | ekey[0+((k+4)&7)];\
}

#define FL_dec( k ){\
r0 ^= r1 | ekey[0+((k+4)&7)];\
r2 ^= r3 | ekey[8+((k+6)&7)];\
r1 ^= r0 & ekey[8+((k+2)&7)];\
r3 ^= r2 & ekey[0+((k+0)&7)];\
}

#define FI_key( k ){\
r0 = ekey[k] >> 7;\
r1 = ekey[k] & 0x7f;\
r0 = S9[r0] ^ r1;\
r1 = S7[r1] ^ ( r0 & 0x7f );\
r1 ^= ekey[(k+1)&7] >> 9;\
r0 ^= ekey[(k+1)&7] & 0x1ff;\
r0 = S9[r0] ^ r1;\
ekey[ 8+k] = r1 << 9 ^ r0;\
ekey[16+k] = r0;\
ekey[24+k] = r1;\
}

#define FI_txt( a0, a1, k ){\
a1 = a0 >> 7;\
a0 &= 0x7f;\
a1 = S9[a1] ^ a0;\
a0 = S7[a0] ^ a1;\
a1 ^= ekey[16+(k)];\
a0 ^= ekey[24+(k)];\
a0 &= 0x7f;\
a1 = S9[a1] ^ a0;\
a1 ^= a0 << 9;\
}

#define FO_txt( a0, a1, a2, a3, k ){\
t0 = a0 ^ ekey[k];\
FI_txt( t0, t1, (k+5)&7 );\
t1 ^= a1;\
t2 = a1 ^ ekey[(k+2)&7];\
FI_txt( t2, t0, (k+1)&7 );\
t0 ^= t1;\
t1 ^= ekey[(k+7)&7];\
FI_txt( t1, t2, (k+3)&7 );\
t2 ^= t0;\
t0 ^= ekey[(k+4)&7];\
a2 ^= t0;\
a3 ^= t2;\
}

void P_Misty1_Keysch( UInt8 *key, UInt *ekey )
{
UInt r0,r1;

ekey[0] = (UInt)key[ 0]<<8 ^ (UInt)key[ 1];
ekey[1] = (UInt)key[ 2]<<8 ^ (UInt)key[ 3];
ekey[2] = (UInt)key[ 4]<<8 ^ (UInt)key[ 5];
ekey[3] = (UInt)key[ 6]<<8 ^ (UInt)key[ 7];
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ekey[4] = (UInt)key[ 8]<<8 ^ (UInt)key[ 9];
ekey[5] = (UInt)key[10]<<8 ^ (UInt)key[11];
ekey[6] = (UInt)key[12]<<8 ^ (UInt)key[13];
ekey[7] = (UInt)key[14]<<8 ^ (UInt)key[15];

FI_key( 0 ); FI_key( 1 ); FI_key( 2 ); FI_key( 3 );
FI_key( 4 ); FI_key( 5 ); FI_key( 6 ); FI_key( 7 );
}

void P_Misty1_Cbcenc( UInt8 *pdat, UInt8 *cdat, UInt8 *ivec, UInt *ekey, UInt
block )
{
UInt r0,r1,r2,r3,t0,t1,t2,buff[4];

buff[0] = (UInt)ivec[0]<<8 ^ (UInt)ivec[1];
buff[1] = (UInt)ivec[2]<<8 ^ (UInt)ivec[3];
buff[2] = (UInt)ivec[4]<<8 ^ (UInt)ivec[5];
buff[3] = (UInt)ivec[6]<<8 ^ (UInt)ivec[7];

while( block != 0 ){
r0 = (UInt)pdat[0]<<8 ^ (UInt)pdat[1];
r1 = (UInt)pdat[2]<<8 ^ (UInt)pdat[3];
r2 = (UInt)pdat[4]<<8 ^ (UInt)pdat[5];
r3 = (UInt)pdat[6]<<8 ^ (UInt)pdat[7];

r0 ^= buff[0]; r1 ^= buff[1];
r2 ^= buff[2]; r3 ^= buff[3];

FL_enc( 0 );
FO_txt( r0, r1, r2, r3, 0 );
FO_txt( r2, r3, r0, r1, 1 );
FL_enc( 1 );
FO_txt( r0, r1, r2, r3, 2 );
FO_txt( r2, r3, r0, r1, 3 );
FL_enc( 2 );
FO_txt( r0, r1, r2, r3, 4 );
FO_txt( r2, r3, r0, r1, 5 );
FL_enc( 3 );
FO_txt( r0, r1, r2, r3, 6 );
FO_txt( r2, r3, r0, r1, 7 );
FL_enc( 4 );

buff[0] = r2; buff[1] = r3;
buff[2] = r0; buff[3] = r1;

cdat[0] = (UInt8)(r2 >> 8); cdat[1] = (UInt8)(r2);
cdat[2] = (UInt8)(r3 >> 8); cdat[3] = (UInt8)(r3);
cdat[4] = (UInt8)(r0 >> 8); cdat[5] = (UInt8)(r0);
cdat[6] = (UInt8)(r1 >> 8); cdat[7] = (UInt8)(r1);

pdat += 8; cdat += 8; block--;
}

ivec[0] = (UInt8)(buff[0] >> 8); ivec[1] = (UInt8)(buff[0]);
ivec[2] = (UInt8)(buff[1] >> 8); ivec[3] = (UInt8)(buff[1]);
ivec[4] = (UInt8)(buff[2] >> 8); ivec[5] = (UInt8)(buff[2]);
ivec[6] = (UInt8)(buff[3] >> 8); ivec[7] = (UInt8)(buff[3]);
}

void P_Misty1_Cbcdec( UInt8 *cdat, UInt8 *pdat, UInt8 *ivec, UInt *ekey, UInt
block )
{
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UInt r0,r1,r2,r3,t0,t1,t2,buff[4],buff2[4];

buff[0] = (UInt)ivec[0]<<8 ^ (UInt)ivec[1];
buff[1] = (UInt)ivec[2]<<8 ^ (UInt)ivec[3];
buff[2] = (UInt)ivec[4]<<8 ^ (UInt)ivec[5];
buff[3] = (UInt)ivec[6]<<8 ^ (UInt)ivec[7];

while( block != 0 ){
r0 = (UInt)cdat[0]<<8 ^ (UInt)cdat[1];
r1 = (UInt)cdat[2]<<8 ^ (UInt)cdat[3];
r2 = (UInt)cdat[4]<<8 ^ (UInt)cdat[5];
r3 = (UInt)cdat[6]<<8 ^ (UInt)cdat[7];

buff2[0] = r0; buff2[1] = r1;
buff2[2] = r2; buff2[3] = r3;

FL_dec( 4 );
FO_txt( r0, r1, r2, r3, 7 );
FO_txt( r2, r3, r0, r1, 6 );
FL_dec( 3 );
FO_txt( r0, r1, r2, r3, 5 );
FO_txt( r2, r3, r0, r1, 4 );
FL_dec( 2 );
FO_txt( r0, r1, r2, r3, 3 );
FO_txt( r2, r3, r0, r1, 2 );
FL_dec( 1 );
FO_txt( r0, r1, r2, r3, 1 );
FO_txt( r2, r3, r0, r1, 0 );
FL_dec( 0 );

r2 ^= buff[0]; r3 ^= buff[1];
r0 ^= buff[2]; r1 ^= buff[3];

buff[0] = buff2[0]; buff[1] = buff2[1];
buff[2] = buff2[2]; buff[3] = buff2[3];

pdat[0] = (UInt8)(r2 >> 8); pdat[1] = (UInt8)(r2);
pdat[2] = (UInt8)(r3 >> 8); pdat[3] = (UInt8)(r3);
pdat[4] = (UInt8)(r0 >> 8); pdat[5] = (UInt8)(r0);
pdat[6] = (UInt8)(r1 >> 8); pdat[7] = (UInt8)(r1);

pdat += 8; cdat += 8; block--;
}

ivec[0] = (UInt8)(buff[0] >> 8); ivec[1] = (UInt8)(buff[0]);
ivec[2] = (UInt8)(buff[1] >> 8); ivec[3] = (UInt8)(buff[1]);
ivec[4] = (UInt8)(buff[2] >> 8); ivec[5] = (UInt8)(buff[2]);
ivec[6] = (UInt8)(buff[3] >> 8); ivec[7] = (UInt8)(buff[3]);
}
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*Toshio Tokita, Yasuyuki Sakai and Katsuyuki Takashima are with the Information Technology R&D Center.

by Toshio Tokita, Yasuyuki Sakai and Katsuyuki Takashima*

Cryptanalysis Technique to Evaluate
the Strength of Ciphers

The design of secure ciphers (cryptosystems)
generally requires cryptoanalytical techniques
with which to evaluate their strength. This pa-
per provides a summary of methods of evaluat-
ing the strengths of common-key block ciphers
and public-key cryptosystems. It also introduces
software developed by Mitsubishi Electric Cor-
poration to evaluate the security and the
performance of cryptosystems.

Common-Key Block-Cipher Strength
Evaluation
Here we explain differential and linear crypta-
nalysis, methods commonly used for common-
key block ciphers.

DIFFERENTIAL CRYPTANALYSIS AND DIFFERENTIAL
CHARACTERISTIC PROBABILITIES. Differential
cryptanalysis, proposed by Biham, et al, in 1990
is based on the principle that it is possible to
characterize statistically variations between
plaintexts and ciphertexts, where the charac-
teristics can be used to guess key information.
Generally, the cipher strength against this
cryptanalysis method is expressed in terms of
maximum average differential probability, as in
Eq. 1, with lower maximum average differential
probability indicating more secure ciphers. Here,
∆P (≠0) and ∆C are the amounts of change in
plaintext P and ciphertext C, respectively, where
(+) indicates a bitwise exclusive OR.

DPmax=max∆P ≠ 0, ∆CProb {F (P + ∆P) + F(P)=∆C}
................ Eq. 1

However, for any given encryption algorithm the
accurate calculation of the DPmax value is ex-
tremely difficult because of the computational
complexity involved. Given this, instead of per-
forming the calculation, the algorithm C = F (P)
is broken down into small component functions
F1, F2, F3,..., in the form of C = Fn (...(F2(F1.(P)))),
where generally the maximum differential char-
acteristic probability as defined in Eq. 2 is used
as the indicator for the strength against the dif-
ferential cryptanalysis method.

DP’max=max Π Prob{Fi (Pi + ∆Pi) + Fi (Pi)=∆Pi+1}
................ Eq. 2

On the other hand, the number of plaintext and
ciphertext pairs required for success with differ-
ential cryptanalysis is inversely proportional to
the maximum differential characteristic probabil-
ity, where the smaller this probability value, the
more secure the encryption.

LINEAR CRYPTANALYSIS AND LINEAR CHARAC-
TERISTIC PROBABILITIES. Linear cryptanalysis
was proposed by the corporation in 1993, based
on the principle that it is possible to character-
ize statistically the relationship between
plaintexts, ciphertexts, and the bits in the key,
where the characteristics can be used to guess
key information. The strength of a cipher against
linear cryptanalysis is expressed in terms of the
maximum average linear probability as defined
in Eq. 3, where the smaller the maximum aver-
age linear probability, the more secure the en-
cryption.

Here ΓP and ΓC (≠ 0) indicate the mask val-
ues of the plaintext P and the ciphertext C, re-
spectively, and (·) indicates the parity of the value
that is calculated as the logical AND for each
bit.

LPmax= maxΓC ≠ 0,ΓP| 2 · Prob {P · ΓP = C · ΓC} - 1|2

................. Eq. 3

However, for any given encryption algorithm the
accurate calculation of the LPmax value is ex-
tremely difficult because of the computational
complexity involved. Given this, instead of per-
forming the calculation, the algorithm C = F (P)
is broken down into small component functions
F1, F2, F3,..., in the form of C = Fn (...(F2(F1(P)))),
where generally the maximum differential char-
acteristic probability as defined in Eq. 4 is used
as the indicator for the strength of the linear
cryptanalysis.

LP’max = max Π |2 · Prob{Pi · ΓPi = Pi + 1 · ΓPi + 1} - 1|2

................ Eq. 4

On the other hand, the number of plaintext and
ciphertext pairs required for success in linear
cryptanalysis is inversely proportional to the
maximum differential characteristic probability,
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where the smaller this probability value, the
more secure the encryption.

OTHER STRENGTH EVALUATIONS. See reference
[2] for other cryptanalytical methods not de-
scribed here (for example, truncated differential
cryptanalysis, higher-order cryptanalysis, etc).

There is also the case where a common-key
block cipher is used in a mode such as OFB for
random-number generation. Generally, an evalu-
ation of randomness in such cases requires sta-
tistical methods, considering long-period
characteristics, linear complexity, equal 0/1 fre-
quency, etc.

Public-Key Cryptosystem Strength Evaluations
Generally, public-key cryptosystems are de-
signed basing their security on the intractabil-
ity of the following problems in number theory:

1.  The integer-factorization problem
2. The finite-field discrete-logarithm problem
3. The elliptic-curve discrete-logarithm problem

Here, we call these “integer-factorization based
public-key cryposystems,” “discrete-logarithm
based  public-key cryptosystems” and “elliptic
curve discrete-logarithm based public-key
cryptosystems” and explain each of them below.

INTEGER-FACTORIZATION BASED PUBLIC-KEY
CRYPTOSYSTEM STRENGH EVALUATIONS. The
RSA cryptosystem, which is the most common
public-key scheme in use today, is founded on
the security provided by the intractability of the
integer-factorization problem. The most obvious
way to attack the RSA cryptosystem is by fac-
torizing the publicly known composite modulus
n (the product of two distinct primes that are
themselves private information). There is a con-
siderable literature on factoring algorithms.

The running time of some factoring algorithms
depends solely on the size of n. They include
the quadratic-sieve method and the number-field
sieve method.

In contrast, some algorithms are tailored to
perform better when the composite modulus n
is of a special type. The running times of such
algorithms therefore typically depend on certain
properties of the factors of n. They include
Pollard’s rho method , the elliptic curve method,
the p-1 method, and the p+1 method.

Although the difficulty of solving the integer-
factorization problem typically increases with
the size of the composite number (with the
computational complexity increasing in an or-
der termed sub-exponential time), when the com-

posite is the product of prime factors that have
certain properties, then the factorization can be
done quickly even if the modulus itself is large.

DISCRETE-LOGARITHM BASED PUBLIC-KEY
CRYPTOSYSTEM STRENGTH EVALUATIONS. The
discrete-logarithm problem is one that is used
broadly in parallel with the factorization prob-
lem. For a given prime number p, a generator g
of the multiplicative group of Zp, and an element
y of the multiplicative group of Zp, the problem
is to find an integer x such that y ≡ gx modp.

Here, x is known as the base-p discrete loga-
rithm. For example, x is 4 when 4 ≡ 3x mod7.
Although logarithm calculations for real num-
bers are easy, the logarithm calculations for base
p, or in other words, logarithmic calculations in
a discrete domain are difficult when p is large.

The ElGamal cryptosystem is typical of those
that base their security on the intractability of
this problem. Additionally, even in the most com-
mon key-agreement protocol, the Diffie-Hellman
(DH) protocol, advantage is taken of the fact that
the discrete-logarithm problem is difficult to
solve. (Note that in the DH key-agreement pro-
tocol, security is based on the DH assumption,
which is a stronger assumption than the discrete-
logarithm assumption.)

One possible attack on the ElGamal crypto-
system and the DH key-agreement protocol is
to calculate the private information x from the
public information y, g, and p. Such methods in-
clude Pollar’s rho method, the Pohlig-Hellman
method, the index-calculus method, and the
number-field sieve method. The discrete-loga-
rithm problem, like the factorization problem,
is generally more difficult to solve when the
various parameters are larger (that is, the num-
ber of calculations required increases in what is
termed sub-exponential time); however, when
parameters having specific characteristics are
selected, the discrete-logarithm calculations can
be done easily regardless of the size of the pa-
rameters.

ELLIPTIC-CURVE DISCRETE-LOGARITHM PUBLIC-
KEY CRYPTOSYSTEM STRENGTH EVALUATIONS.
Algorithms for RSA and ElGamal cryptosystems
use integer (or more precisely, “finite field”) ad-
ditions and multiplications. Similarly, the ellip-
tic-curve cryptosystem is of the same type in that
it uses addition on an elliptic curve. (In Fig. 1,
point S is the result of adding point Q and point
R.) The computational complexity problem of the
elliptic curve discrete logarithm is formulated in
terms of addition on an elliptic curve, and the
elliptic-curve crptosystem, as typified by the
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elliptic-curve ElGamal cryptosystem, bases its se-
curity on that difficulty. Generally no algorithms
have been established by which to solve the
elliptic-curve discrete-logarithm problem
efficiently, but there are efficient cryptanalytic
methods for specific elliptic curves.

Methods for attacking specific elliptic-curve
cryptosystem parameters include the Pohlig-
Hellman method, the MOV method, the FR
method, and the Satoh-Araki-Semaev-Smart
(SASS) method. In order to preserve sufficient
security against the MOV method or the FR
method, the MOV (FR) reduction degree of the
elliptic curve must be large. Additionally, in or-
der to be secure against the SASS method, the
trace of the Frobenius endomorphism on the el-
liptic curve must not be one. Furthermore, in
order to be secure from the Pohlig-Hellman
method, the number of rational points on the
elliptic curve must be a (pseudo-) prime. Estab-
lishing the parameters of the elliptic-curve
cryptosystem to fulfill these criteria requires the

number of rational points on the elliptic curve
to be calculated with some ingenuity. The so-
called SEA method, which places no restrictions
on the characteristics of finite fields, has been
well established for such calculations for over
eight years. On the other hand, the recently-
established Satoh method is particularly useful
when the characteristic is small, and the
Skjernaa, FGH and AGM methods are improve-
ments of it.

These fast algorithms are based on number
theory, and the search for improved algorithms
continues. Recently the Weil-descent method
(and in particular, the GHS method) has been
discovered as one method of cryptographic at-
tack, and as a result, the current recommenda-
tion for protection is to use a group of rational
points on an elliptic curve, whose values of (x,
y) coordinates are in a prime degree extension
field over prime field.

Cipher-Performance Analysis Software
This section will discuss the cipher-performance
analysis software developed by Mitsubishi Elec-
tric. This is divided into software for common-
key and public-key cryptosystems, and evaluates
the strength of a cipher against any of the
methods discussed above.

COMMON-KEY CRYPTOSYSTEM PERFORMANCE
EVALUATION SOFTWARE. Fig. 2 shows the struc-
ture of an approach to common-key crypto-
system performance analysis software. Summa-
ries will be given for each of the software com-
ponents comprising the common-key crypto-
system performance evaluation software.
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Q

Fig. 1 Example of elliptic curve : y2 = x3 - x
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Fig. 2 Evaluation software for common-key cryptosystem (outline)
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1. Cipher security-evaluation software
This software evaluates the differential char-
acteristic probabilities and the linear charac-
teristic probabilities of the cipher to be
evaluated. Additionally, when a pseudo-ran-
dom number generator is used, it investigates
frequency tests as a measure of randomness,
and investigates collision tests and linear com-
plexity.

2. Cipher speed-evaluation software
This evaluates the processing speed (as an
absolute value) of the encryption/decryption
processes on a specific platform for the algo-
rithm to be evaluated. Virtual platforms can
also be designated and the processing speeds
will be evaluated as a relative speed, relative
to the virtual platform

3. Encryption software for which performance
was evaluated
The encryption algorithms for the ciphers to
be evaluated had functions for absolute speed
evaluations and security evaluations for AES
(Rijndael), Serpent, CAST-256, and Twofish,
and functions that were subjected to relative
speed evaluations.

4. Cipher-evaluation workbench
GUI functions are used when setting the
evaluation parameters.

5. Evaluation-results display software
GUI functions are used when displaying the
evaluation results.

PUBLIC-KEY CRYPTOSYSTEM PERFORMANCE
EVALUATION SOFTWARE. Fig. 3 shows the struc-
ture of an approach to public-key cryptosystem
performance analysis software. A brief summary
of the various software components comprising

the public-key cryptosystem security evaluation
software is presented below.

1. Public-key cryptosystem basic calculation
library
This is a library of basic calculations for pub-
lic-key cryptosystems.

2. Security evaluation software for integer-fac-
torization based cryptosystems
This performs security analysis for integer-
factorization based public-key cryptosystems
using the quadratic-sieve and elliptic-curve
methods of factoring.

3. Security-evaluation software for discrete-loga-
rithm based cryptosystems
This performs security analysis for discrete-
logarithm based public-key cryptosystems us-
ing the Pohlig-Hellman and index-calculus
methods.

4. Security-evaluation software for elliptic-curve
discrete-logarithm based cryptosystems
This performs security analysis for elliptic-
curve discrete-logarithm based public-key
cryptosystems based on counting the num-
ber of rational points on an elliptic curve (SEA
method), on the trace of the Frobenius endo-
morphism on the elliptic curve, and on the
MOV conditions.

Cipher-evaluation technologies are progressing
daily based on innovations in cryptanalysis meth-
ods. As a result, the cipher-strength evaluation
software described in this paper will need to
undergo enhancements to handle each new in-
novation. ❑

Note:Note:Note:Note:Note: The cipher performance evaluation software described in this
paper includes results from the Cipher Strength Evaluation
Technology Development Project by the Department  for the
Development of Fundamental Technologies for the Next-Generation
Digital Industry, of the Information-Technology Promotion Agency,
Japan.
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Cipher Algorithm Implementation

This article describes cipher-implementation
technology. When implementing ciphers one
must carefully consider the usage environment
and security policies in order to strike a balance
between implementation scope and perfor-
mance. Two types of cipher implementation (in
software and in hardware) are discussed here,
and we conclude by touching upon reusable de-
sign assets (intellectual properties) in hardware
implementation, which has been the focus of so
much attention recently.

Implementation in Software

THE MISTY1 IMPLEMENTATION METHOD. Many
techniques exist to increase the speed of ciphers
in software. While we have included several of
these techniques in MISTY1[1], we have also
given thought to optimizing the programming
based on the characteristics of specific proces-
sors.[2]~[5]

As variations on the method of implementing
the MISTY1 algorithm, three of the following
four methods (numbered below) use tables of dif-
ferent sizes. As shown for the fourth, the well-
known “Bit Slice” implementation can also be
applied to MISTY1 as a method well-suited to
parallel processing. The numbers in parenthe-
ses indicate the sizes of the tables.

1. Implementation as shown in the specification
drawings (2.3kbyte)

2. Reduced number of instructions using FI-func-
tion equivalent conversion (2.3kbyte)

3. Reduced number of instructions using dy-
namic table generation (9.5kbyte)

4. Multiple block parallel implementation using
bit slice (0kbyte, i.e., zero table)

IMPLEMENTATION ON RISC PROCESSORS. In the
second and third methods listed above, it is pos-
sible to reduce the total number of instructions
without dramatically increasing the table size
as a result of internal function equivalent con-
version. When these methods are used on the
Pentium*-II and -III, Alpha-21264, or similar pro-
cessors,  the table size will be less than the size
of the primary cache, meaning that these meth-

ods provide a substantial increase in the process-
ing speed in these processors.[6]&[7]  The highest
speed performance in a MISTY1 software imple-
mentation has been achieved using the parallel
processing method in four above.

The key-schedule implementation also varies
across these four methods. In particular, where
tables depend on the key, the tables are generated
by the key-schedule part, and thus the overhead
of that part is large, and in actual use the time
that is required to do so cannot be ignored. As a
result, the most appropriate method should be se-
lected according to the data size and the applica-
tion after taking into account the effects of key
scheduling time as well, see Tables 1 and 2.
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COMPARISONS WITH OTHER CIPHERS. Fair com-
parisons of software performance require not only
the use of the same platform but also the same
coding style and the same speed measurement
program, and the fact is that, at present, the
speeds of the various algorithms are measured
on a variety of different platforms using a vari-
ety of different measurement methods. Com-
pletely standardizing these platforms and
methods for the purposes of comparison is prob-
ably a practical impossibility. With this caveat,
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Fig.1 shows the results of known high-speed
encryption implementation, in terms of the num-
ber of encryption cycles per byte unit, not bro-
ken out by the platform used.

Here, the white bars show the speeds in nor-
mal implementation using single-block units,
while the black bars show the speeds when par-
allel processing is allowed. In MISTY1, the speed
for 64-bit ciphering in normal single-block imple-
mentation is about the same as that of other
methods, but if parallel processing is not allowed,
the speed is decisively faster in processors with
large numbers of registers (such as the Al-
pha21264) than the 128-bit block ciphering in
AES (Rijndael)[12]. The reason for this is that
MISTY1 is extremely compact in hardware.

IMPLEMENTATION ON MICROCOMPUTERS. Tables
3 and 4 show the results of implementing
MISTY1 on microcomputers included in other
equipment. Here, the targets were the Mitsu-
bishi Electric Corporation M32R, M16C, and Z80
microcomputers. The M32R and M16C are re-
spectively 32-bit and 16-bit microcomputers de-
veloped independently by the corporation. These
are general-purpose microcomputers that feature
full product lines and are used broadly in a wide
range of fields. Although at this point we show
the results of implementation using code devel-
oped with an emphasis on speed, the cipher can
also be implemented with an emphasis on
reducing the size of the code. The Z80 is a stan-
dard environment for evaluating the implemen-
tation of symmetric-key ciphers on 8-bit
microcomputers. It is desirable to use only a small
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Fig. 1 Ciphering speed (cycles/byte)

amount of RAM in an 8-bit microcomputer. In
an implementation where the emphasis is
placed on reducing the amount of RAM used,
the MISTY1 cipher was successfully miniatur-
ized and accelerated.

Implementation in Hardware
Two aspects must be considered in implement-
ing cipher algorithms in hardware. The first con-
cerns incorporation into applications. This must
be done under the conditions required by the
application, and thus must be optimized for each
application. The second concerns evaluating the
implementation. Here the implementation is
done while keeping in mind acceleration and
miniaturization under fair evaluation conditions.
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DESIGN ARCHITECTURE. Many cipher algo-
rithms, such as MISTY[1], KASUMI[8], Camellia[9],
and AES (Rijndael)[11] have fundamental functions
that are recursive. The architecture of these
types of algorithms can be implemented using
the following structures as shown  in Fig. 2.

1. Fully loop-unrolled architecture
2. Loop architecture
3. Pipeline architecture

An example of a fully loop-unrolled implemen-
tation of an algorithm where an F function is
repeated n times is given in Fig. 2a. In this ar-
chitecture, all of the rounds of the function are
implemented independently, where all calcula-
tions are performed in a single clock cycle. While
this makes for rather large circuits, there are no
registers that contain loop-structure selectors or
intermediate values, and thus there is no delay-
time overhead, so this approach produces high
throughput.

Fig. 2b shows an example of a loop architec-
ture using only a single implementation of the F
function in the same algorithm as in Fig. 2a. This
architecture deploys only the essential function,
and the processing of the entire algorithm is done
by repeating the calculations. As a result, the
circuit is small. On the other hand, because the
processing of the cipher must be looped a num-
ber of times, there is increased overhead in the
selectors that structure the loop and in the delay
times in the registers, and so the throughput is
impaired. The size of the circuit, the number of
loops, and the throughput are determined by the
selection of the fundamental calculation circuit
that comprises each loop.
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Fig. 2 Hardware implementation architectures

Fig. 2c is an example of an n-stage pipeline
implementation of the same algorithm shown
in Fig. 2a. This architecture divides up the en-
tire algorithm into operating stages for each func-
tional block, in a structure where each operating
stage operates independently of the others. Be-
cause of this, the circuit is larger (by the amount
of the registers) than the size of the circuit for
the fully loop-unrolled architecture, but this ar-
chitecture is also extremely fast because each
of the stages can be performed in parallel. How-
ever, caution is required because in this archi-
tecture it is difficult to implement any loop-back
processes in the cipher algorithm itself.

The FIPS (Federal Information Processing Stan-
dard) cipher-use modes[12]&[13] are often used in
cipher algorithms, where there is a mode in
which the data process in the previous circuit is
chained to the next process (i.e., the cipher-block
chaining (CBC), output feedback (OFB), and ci-
pher feedback (CFB) modes) and also a mode
wherein this chaining is not performed (i.e., elec-
tronic codebook (ECB) and counter (CTR)).

With CBC, OFB, and CFB, the mode in the
first type of architecture (above) is appropriate
in terms of the throughput of the architecture.
For ECB and CTR, the third type of architecture
is appropriate. On the other hand, the second
type can be applied to all modes, and is also ap-
plicable in implementations where the empha-
sis is placed on the size of the circuit.

CONSIDERATIONS IN IMPLEMENTATIONS. Until
now, we have implemented into ASIC (Applica-
tion Specific Integrated Circuit) and FPGA (Field
Programmable Gate Array) modular exponential
arithmetic, which is usually used in RSA, and a
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between circuit size and throughput, a knowl-
edge of cipher algorithms and of mathematics,
a knowledge of device characteristics and logic-
synthesis technologies are all required in addi-
tion to hardware-design engineering in order to
implement cipher algorithms efficiently.

Intellectual Property Regarding Cipher
Algorithms for Security IC Development
Functional blocks that can be reused in the de-
velopment of ASICs and FPGAs are known as
intellectual properties (IPs). Advances in semi-
conductor technology have made the develop-
ment of large-scale ICs possible, and the reuse
of intellectual properties has vastly increased
the efficiency of the design process.

On the other hand, in the networked society
of today, ICs with ciphering functions are seen
everywhere, used with the Internet, mobile tele-
phones, DVDs, IC cards and in a host of other
places. Intellectual properties for cipher algo-
rithms for the development of security ICs (re-
ferred to simply as “cryptographic IPs” below)
have been developed as a method by which to
expedite the development of ICs with security
functions and to apply to a variety of products
the implementation technologies described
above.

Types of IP

SOFT IP. A soft IP is one provided in the form of
HDL (Hardware Description Language) from
which logic circuits can be synthesized. This
type of intellectual property is extremely flex-
ible, and can be applied to a variety of IC manu-
facturing processes.

variety of symmetric-key cipher algorithms in-
cluding MISTY1 and Camellia.[14]~[18]  In particu-
lar, for the FPGA the implementation was done
using the Virtex series FPGA, produced by Xilinx
Inc., which is often used in evaluations outside
Japan.

In recent years, implementations in hardware
have often used a hardware description language
such as VHDL, Verilog-HDL, or the like, and as
described in references [14] and [19], there may
be differences in the performance in the hard-
ware due to differences in the description method
and in the method by which the design is actu-
ally implemented. Furthermore, the type of de-
scription should be modified depending on the
specifics of the device targeted for the imple-
mentation (i.e., depending on whether it will be
in an ASIC or in an FPGA) in order to increase
its efficiency.

It is also important to look at the tradeoffs
between circuit size and throughput when se-
lecting the architecture to be used.

When implementing cipher algorithms in hard-
ware, a knowledge, for example, of mathemat-
ics is required in addition to a knowledge of
hardware design engineering. For example, in
symmetric-key cipher algorithms, a non-linear
replacement table (SBOX) is often used, and in
recent years the number of these SBOX imple-
mentations based on Galois field calculations
has been on the rise. Because of this, knowl-
edge of mathematics is critical in reducing the
size of the hardware, and knowledge of the Ga-
lois fields and logic-compression techniques are
essential in reducing the size of the SBOX.

As described above, a variety of technologies,
such as those for understanding the tradeoffs

Fig. 3 Positioning of cryptographic IPs
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2002retrauqdr3morF 483,652,291-AHS

Table 6 Timing of Cryptographic IP OfferingsFIRM IP. A firm IP is one provided in the form of
logic-synthesis HDL, IC manufacturing process
libraries, floor plan information, or net lists.

HARD IP. A hard IP is one provided in the form
of layout and interconnect data for a specific
manufacturing process. It is optimized for the
particular process, and thus lacks flexibility in
use.

The cryptographic IPs we have developed fall
into the category of soft IP described above. How-
ever, because the HDL for logic circuit synthe-
sis, which is the form in which soft IPs are
usually provided, is normally readable, there has
been no way to prevent leakage of the impemen-
tation technology through reverse engineering
of the HDL. Additionally, because it can be as-
sumed that the sophisticated implementation
technology and know-how will be disclosed when
the soft IP is provided, soft IPs have only been
available at extremely high cost. We have de-
veloped our cryptographic IPs as a design com-
piler library for Synopsys Inc., which has become
the de facto standard logic synthesis tool for IC
development in the industry. The use of this
method has made it possible to provide inexpen-
sive IPs with all of the flexibility of a soft IP but
without the leakage of implementation know-
how.

Each of our cryptographic IPs includes a
license-control function, and thus is able to pro-
tect this know-how, see Fig. 3.

Table 5 shows the detail of what is provided
as the cryptographic IP, and Table 6 shows the
supported cipher algorithms. Not only does this
approach support the most up-to-date cipher al-
gorithms but it also features the fact that it can
include the provision of customized technolo-
gies and of development environments.

The article summarizes some of the important
considerations and options available to ensure
the optimum implementation of ciphers. The
establishment of evaluation methods for the abil-
ity to implement cipher algorithms, compatible
with the most up-to-date examples, remains as
an urgent priority for future development. ❑
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Quantum Cryptography

Quantum cryptography is a new encryption
cryptographic technology that stands at the
confluence [fusion] of computer science and
physics[1]. In contrast with modern cryptography,
where security is evaluated on the basis of
computational complexities (the amount of time
required to break the encryption), quantum cryp-
tography provides absolute security because it
is based on fundamental physical laws. This
article describes these fundamental principles
of quantum cryptography technology, a method
to implement it, and the data processes involved.
It also describes the quantum-encryption com-
munications system experiments that have been
performed successfully by Mitsubishi Electric in
cooperation with Hokkaido University.

What Is Quantum Cryptography?
Quantum-information technology, born of the
fusion of information science and quantum me-
chanics, has been the subject of considerable
attention since the proposal of P. Shor’s high-speed
quantum algorithm for factoralization. This is be-
cause the technology could conceivably make it
easy to break modern ciphers in which security
is based on a computational complexity theory,
such as public-key cryptosystems. While, in terms
of information-security technology, this type of
quantum information technology provides a pow-
erful attack tool in the form of quantum comput-
ers, it also provides an equally powerful defensive
shield in terms of quantum cryptography. This
shield is an encryption technology based on an
entirely new concept of security–quantum-
mechanical security–rather than depending on
security based on computational complexity.
Therefore, in quantum cryptography absolute se-
curity is guaranteed even with the advent of
ultrahigh-performance computers that would
inevitably pose a threat to modern cryptography.
Furthermore, quantum cryptography holds the
promise of “ultimate security” because it will be
provided with new features, such as eavesdrop-
ping detection.

Here, we will explain a quantum key-distribu-
tion protocol that has been the most successful
form of quantum cryptography in an actual ap-
plication. This protocol allows two users (Alice
and Bob) to share secret keys over a long dis-
tance with absolute security.

Fundamental Principles of Quantum
Cryptography
Quantum cryptography differs from conventional
optical communication in that single quantum
particles (photons) are transmitted with each
item of information Because of this, the quan-
tum aspect of photons––the uncertainty principle
and the no-cloning theorem––comes into play.
The no-cloning theorem states that it is impos-
sible to create a perfect copy of an unknown
quantum state. Additionally, according to the
uncertainty principle, there are certain conju-
gate physical quantities that cannot be accu-
rately observed simultaneously. In other words,
if one physical quantity is observed accurately,
any observation of the other physical quantity
becomes meaningless. These fundamental laws
make it impossible to copy a quantum state with
information (the so-called “qubit”), with the laws
of physics guaranteeing that, once a quantum
state has been observed, then if the state is ob-
served again, one observation will be incorrect.
This leads to so-called “once-and-for-all data
transmission.”

Quantum key-distribution protocols use these
principles. The BB84 protocol, the best known
of them, is explained below (with reference to
Fig. 1).

Alice prepares four different states for one
qubit. Of these four states, two form pairs, for
instance horizontal or vertical polarization and
left- or right-circular polarization. Each pair cor-
responds to one physical quantity, so that if an
attempt is made to measure one of the pairs
correctly, it becomes impossible to measure the
other pair correctly. Bob has two kinds of receiver
(measuring instrument) corresponding to the two
pairs, and is able to measure the state of a pair
correctly only when the correct instrument is
selected. If Bob attempts to remeasure because
he has selected the wrong instrument, the physi-
cal laws described above will make it impossible
for him to do so. The key-sharing procedure is
as described below:

1. Alice and Bob independently prepare random
numbers. For each individual qubit, Alice se-
lects one of the four states using random num-
bers to make her choice random, and sends it
to Bob through the quantum communication
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channel. Bob, according to his own random
numbers, randomly picks one of the two mea-
suring instruments to measure the transmit-
ted qubits. The measurement results are
recorded secretly.

2. Once the qubits have been received, Bob tells
Alice which measuring instrument he used
for each measurement, and Alice tells Bob
which of these measurements was made with
the appropriate instrument. This can be done
over a public communication channel (ie, one
where there is the risk of eavesdropping).

3. Next, Alice and Bob extract only those qubits
that were measured correctly, so the two now
secretly share a series of qubits. When this is
converted into a series of digital bits, they se-
cretly share an identical bit stream.

     In an actual environment, a few of the shared
data may actually not be identical due to noise
or eavesdropping. This necessitates data process-
ing peculiar to quantum cryptography as de-
scribed below. In this data-processing procedure,
bit-error correction (elimination) and privacy am-
plification are performed in order to reduce as
far as possible data tapped by an eavesdropper.
Because both the bit rate and the quantum-bit

1

OK NG OK OK OKNG NG

1 0 0

OK

1

Laser

Alice's 
quantum encoding device

Bob's s quantum - decoding device

Result of 
basis check 

Correct measurement results

Shared bit string

Measurement basis

Encoding table

10 10 10 10

Fig. 1 BB84 protocol (for key distribution)

error rate (QBER) are monitored and estimated,
any disruption by an eavesdropper would be
detected, and so eavesdropping is detectable.

IMPLEMENTATION. When implementing quan-
tum cryptography it is possible, in principle, to
use a variety of quantum systems with two
states; in experiments so far, photons have been
used to carry information. This is because pho-
tons are easy to handle and there is a long his-
tory of successful optical communications.

There are two main methods of encoding data
into photons; polarization encoding and phase
encoding.The transmission channel for photons
can be either air or optical fiber. For the key-
distribution protocol, there are BB84, B92, E91
and several others. Therefore, there are a num-
ber of ways to implement it. Several experiments
in quantum cryptography have already been per-
formed by IBM, the University of Geneva and
the Los Alamos National Laboratory in the
United States. We have also performed such
experiments. These have typically adopted phase
encoding with transmission through an optical
fiber. In the sections below we will explain the
generation of the photons, their transmission,
and their detection.
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defects of low detection efficiency. In addition,
because reducing the temperature to, say, 77K
for long wavelengths requires bulky equipment,
there is still a need to develop an efficient APD
optimized for quantum cryptography.

Data Processing Required for an Actual
System
In an ideal environment, achieving the absolute
security of quantum cryptography, it is possible
to detect eavesdroppers when using a key-
distribution protocol such as BB84. In an actual
environment, there are inevitably physical
errors. This makes it possible for Eve the Eaves-
dropper to tap a few fragments of information
without detection by Alice or Bob under physical
errors. Normally, error bits have a high
probability of resulting from Eve’s eavesdropping.
Therefore, security can be enhanced by detecting
and eliminating those error bits (i.e., through
error correction). However, if the photon
generator transmits not one but two photons per
pulse (despite an extremely small probability that
this will occur), Eve will be able to steal
information by getting one of the photons
without errors in the quantum communications,
or in other words, without arousing the attention
either Alice or Bob. So there will still exist a
small probability of the leakage of partial
information even if error bits are eliminated. The
method where the information is mapped
uniformly into a small space so that information
cannot leak to Eve is “privacy amplification.”
Here, we describe the essential  data-processing
procedures in terms of some simple examples.
The following is a simple example of error
correction.

1. Alice selects a two-bit pair at random, and
tells Bob the results of an exclusive OR op-
eration (XOR) for it.

2. Bob tells Alice whether or not the XOR value
of the corresponding bits was the same.

3. If the value is the same, then the first bit is
kept from the bit pair, and the second bit is
discarded.

4. If different, then both bits are discarded. Here,
one has to discard the second bit, which is
peculiar to quantum cryptography, in order
to correct errors while keeping security. This

GENERATION OF PHOTONS. The carrier of infor-
mation for quantum cryptography is a single pho-
ton. At present, the typical case is one in which
the light emitted from a pulse laser is reduced
using an optical attenuator until essentially unity
is achieved. For example, if we set the average
number of photons per pulse as 0.1, then the
probability of there being more than one photon
per pulse becomes essentially negligible. We can
eliminate this effect by performing the data pro-
cessing described below. However, if a single-
photon generating technology were established,
it would be possible to achieve quantum cryp-
tography at a higher speed than possible today,
and because this technology is also essential for
other aspects of quantum information technol-
ogy, the single-photon generator is an important
research theme.

TRANSMISSION OF PHOTONS. Although there are
two types of transmission (free-space and opti-
cal-fiber transmission), at present experiments
tend to focus on the use of optical fibers because
of the relative ease in maintaining the stability
of the system. In optical-fiber transmission,
phase encoding is used for its simplicity. This
encoding often uses, for example, Mach-Zehnder
interferometry. In this case, one must carefully
consider the structure to ensure stability be-
cause the polarization of the photons is affected
by birefringence, polarity dispersion, etc. When
it comes to the wavelength, while both short
and long wavelengths are available, long wave-
lengths are more suitable for long-distance trans-
missions in terms of transmission losses.

In free-space transmission there have recently
been experiments with satellite communications
using short wavelengths, increasing the poten-
tial applications for this technology.

DETECTION OF PHOTONS. For the detection of
single photons, at present the best method is
the use of an avalanche photodiode (APD). De-
pending on the wavelengths, three different
types of semiconductors (Si, Ge, or InGaAs) may
be used. There are commercial detectors with
high detection efficiency at room temperature
for short wavelengths. However, experiments
performed with, for example, InGaAs at the
longer wavelengths (such as 1,550nm) reveal the
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makes it possible to prevent single bits from
leaking to Eve.[3]

     The following is an explanation of privacy
amplification

1. Alice again selects a two-bit pair at random,
and calculates its XOR value. However, this
time she does not disclose the value to Bob.

2. Alice announces only which bits she has se-
lected.

3. Alice and Bob each replace the two bits with
their XOR values. By doing this, if Eve were
to learn only the first bit but not know the
second bit, then she would learn nothing
about their XOR value. If Eve were to know
both bits with finite probability, still the prob-
ability that she could correctly infer the XOR
value would be reduced, and thus the secu-
rity has been amplified.

A Quantum Cryptosystem by Mitsubishi
Electric Corporation

The following section describes an experimen-
tal quantum cryptosystem and experiments per-
formed by Mitsubishi Electric.

EXPERIMENTAL SETUP. The experimental sys-
tem, as shown in Fig. 2, consists of three sub-
systems: the optics system, the control system,
and the data-processing system.

1. Optics System
The optics system comprises a pulse laser that
transmits photons, an optical fiber that serves

as the transmission channel, a photon detector
that detects the photons, and so on. We adopted
phase encoding, and both parties used phase
modulators to assign information to a photon.

2. Electronic Control System
Each entity controls its phase modulator elec-
tronically to assign information to a photon with
the correct timing.

3. Data-Processing System
A data-processing system generated digital data
(0,1) on each PC, and transmitted this informa-
tion to the electronic control system. This applied
a voltage corresponding to the bit values it received
to modulate the phase in the optics system. Then,
after optical transmission, the quantum key dis-
tribution protocol was used so that both parties
could share the same data (secret key).

SYSTEM FEATURES AND PERFORMANCE. To
implement a quantum cryptosystem as a total
security system, we adopted BB84 as the key-
sharing protocol, phase encoding as the encod-
ing method, an optical fiber as the commu-
nication channel, and 830nm as the light wave-
length. The functions and performance of our
experimental system were as shown in Table 1.
The results are significant as the first in Japan,
not as experimental proof-of-concept but as the
implementation of a total quantum cryptosystem
including  data-processing.[2][3] The transmission
speed (key distribution speed) of 1.1 kbps, and
the error rate of 1.7%, both represent high per-
formance achievements of world class. As for
transmission distances, the experiment was suc-
cessful over 1km.[4] The speed obtained is in the
practical range when one considers its applica-
tion of sharing the security keys for cryptogra-
phy. These experimental values (transmission
distance, speed, and error rate) have not yet been
optimized, and thus further performance im-
provements can be expected. In addition, be-
cause a new method has been suggested in the
quantum-cryptography optics system, it has be-
come possible to perform the key sharing at a
speed approximately six times that of the cur-
rent method, doing so using a simpler system,
and there has also been success in proof-of-con-
cept experiments for multi-party extensions to
quantum cryptography.[5]

Table 1 Features and Performance of Our
Quantum Cryptosystem
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Fig. 2 Experimental setup of quantum cryptosystem

USER INTERFACE. As can be seen in Fig. 2, this
experimental system featured a user interface
facilitating operations on a personal computer.

This paper has provided a brief overview of quan-
tum cryptography and has explained a practical
method of achieving it. It has also described a
successful quantum cryptosystem developed by the
corporation and an experimental configuration and
user interface on a personal computer. We further
explained a practical quantum cryptosystem as a
total security system. We also attempted to
enhance the performance of a single-photon detector
and system-control technology to make it more
attractive as a commercial product. ❑
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TURBOMISTY: A Tamper-Resistant
Secure Board

There are limits to what can be done in soft-
ware to ensure the secure control of private-key
information, central to the safety of any secu-
rity system. Mitsubishi Electric has developed
specialty hardware to provide a secure private
key-control function using a tamper-resistant
unauthorized-access prevention structure,
where the specialty hardware is equipped with
a load-balancing function using multiple boards.

Development Goals
TURBOMISTY was developed primarily to pro-
vide secure control of private keys. The United
States Government has provided the FIPS140-1
standard as the basis for security in encryption
modules, and recently there have been more
cases requiring the use of tamper-resistant hard-
ware complying with this standard. Given this,
TURBOMISTY was designed in compliance with
FIPS140-1, Level 3.

The purpose of the encryption board is not just
to control the private keys but also to provide
high-performance symmetric ciphers such as
TripleDES and MISTY to be used as an encryp-
tion engine.

In the balance between cost and performance,
the objective was not simply to provide a single
board with the highest possible performance;
instead, the development project improved the
total performance level by load balancing among
multiple boards.

Features
Fig. 1 shows an outside view of the TURBO-
MISTY. It provides the following features:

Fig. 1 External appearance of the TURBOMISTY

1. The TURBOMISTY provides a high-level of
security using a tamper-resistant function in
compliance with FIPS140-1, Level 3.

  - Physical protection of secure information such
as key information and authorization param-
eters using hardware.

  - Automatic protection of illegal access to the
hardware itself, with automatic erasure of the
information contained therein.

2. A software interface complying with the PKCS
(Public Key Cryptography Standards) #11, which
has become the industry standard, as the key
control API, providing interoperability with
PKCS #11 applications from other companies.

3. The use of multiple boards makes distributed
load balancing possible using multiple boards
that are transparent to the application.

4. Because the TURBOMISTY is installed in the
form of PCI boards, it can be moved relatively
easily to another platform.

5. Other encryption algorithms, such as elliptic-
curve encryption, can be added at later dates
using firmware updates.

Functions

TAMPER-RESISTANT FUNCTIONS. Attempts to
make the forms of illegal access listed below
will be detected automatically, resulting in the
automatic erasure of all secret information con-
tained within the TURBOMISTY.
  - Removal of the board from the host equip-

ment.
  - Removal of the cover from the board, or de-

struction thereof.
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ASYMMETRIC CIPHER CALCULATIONS. RSA is
used as the asymmetric cipher method, and,
during calculations, all private-key information
is concealed entirely within the board in the
functions listed below in order to prevent any
leakage to the outside:
  - Public-key generation
  - Private-key/public-key storage
  - Private-key/public-key calculations
  - Private-key backup

See below for more information about private-
key backups.

SYMMETRIC CIPHER CALCULATIONS. Encryption
and decryption calculation functions are provided
using DES, Triple DES, and MISTY.

HARDWARE-BASED RANDOM NUMBER GENERA-
TOR. It is possible to obtain better random num-
bers using hardware than it is with software-
based generators.

DIGITAL CERTIFICATE STORAGE. This is based
on X.509

MESSAGE DIGESTS. These are created using
MD5 and SHA1.

SSL SERVER CONNECTIVITY. In the SSL proto-
col, which is used broadly as a secure commu-
nications protocol between browsers and web
servers on the Internet, the control of the pri-
vate keys for the SSL server is of critical impor-
tance. While at present most SSL servers store
the private-key information on the disk drive,
as is shown in Fig. 2, a combination of the
TURBOMISTY and an SSL server makes it
possible to control securely the private key in-

Web server

Browser
SSL

TURBOMISTY

SSL module

Generation of SSL 
handshake parameters

Private 
key

Fig. 2 Connections for an SSL server

formation for the SSL server, used when estab-
lishing an SSL connection.

The load on the CPU can also be reduced by
performing in the TURBOMISTY the processes
that are involved in encryption.

LOAD BALANCING. Load balancing among mul-
tiple boards is possible.

ADDITION OF NEW ALGORITHMS. Algorithms
can be added by performing firmware updates
for the TURBOMISTY.

Hardware Configuration
As is shown in Fig. 3, the TURBOMISTY is in-
stalled as a set of PCI boards. In order to prevent
unauthorized access to key information or data
from the circuits on the board during the calcu-
lations, the boards are structured with the cir-
cuits mounted on one side, with covers provided
to cover the circuit-sides of the boards.

PCI bus

Circuits for cipher-processing functions

Circuits for management functions

PCI board Battery

Cover

Fig. 3 Hardware configuration

A battery is provided outside the cover to main-
tain the key information when the host device
is turned off, but all other components involved
in the encryption processing and in managing
keys are housed inside the cover.

Software Specifications
The PKCS #11, which has become the global
standard for encryption module interfaces, is
provided as the software interface.

In the TURBOMISTY, a single board has eight
logical slots. So, for example, it can manage pri-
vate keys from multiple certificate authorities
(CAs). Furthermore, a maximum of four boards
can be installed, meaning that up to 32 slots
can be used. The relationships between the logi-
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cal slots and the boards is managed within the
PKCS #11 library.

As is shown in Fig. 4, non-exclusive control of
the multiple ports that are fitted is performed
within the PKCS #11 library, enabling process-
ing to be distributed over multiple boards in a
multi-thread/multi-processing environment
without the need for any modifications to the
applications.

Private Key Backups
TURBOMISTY’s tamper-resistant mechanism
prevents the leakage of key information by eras-
ing automatically private keys stored within it.
This function requires that the private keys be
backed up against the possibility of a loss of se-
curity information due to attempted illegal ac-
cess, damaged boards, etc., during operation.

Although the backup data is stored outside of
the TURBOMISTY, the security is increased by
internally encrypting the private keys and then
dividing them up using a secret sharing proce-
dure and then distributing components of the
encrypted code to multiple users, thereby mak-
ing it impossible to decode the original private
key from the backup data outside of the
TURBOMISTY.

In order to restore the private keys to the
TURBOMISTY, the multiple backup segments
that were indicated when the backup was made
must be reassembled, preventing any individual
from restoring the private keys working alone.
The backup segments can be stored on floppy

Normal PKCS #11 TURBOMISTY PKCS #11

Application Application

4 slots 1 slot

PKCS #11 library PKCS #11 library

Scheduling, etc.

TURBOMISTY

TURBOMISTY

Only one board is used in connections 
with normal applications. With internal PKCS #11, management and 

processing can be distributed over multiple 
boards.

Fig. 4 Distributed processing using PKCS #11 library

disks or IC cards. By storing the backup segments
on IC cards, it is possible to prevent copying of
the backup segments, making control even se-
curer.

Performance
In addition to the advantage of security, the se-
cure boards also provide enhanced performance.
Conventionally, encryption processing and, in
particular, private-key processing as part of an
asymmetric cipher system, has consumed a large
portion of CPU resources in multi-word calcula-
tions. By performing the encryption processes
within the secure board, the load on the host
CPU is reduced. The TURBOMISTY is able to
perform RSA 1024-bit key signature calculations
at a rate of six per second, and can perform RSA
2048-bit key signature calculations at a rate of
about one per second.

In addition, when the signature generation is
distributed among multiple boards, the perfor-
mance increases essentially in direct proportion
to the number of boards, thus making it pos-
sible to obtain a full load-balancing effect.

Managing Operations in the TURBOMISTY
The operation of the TURBOMISTY can be man-
aged using the control tools on the host machine.
The primary functions of the control tools are
as follows:
  - Board status display
  - Board initialization/setup of parameters such

as PINs
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  - Display of lists of keys/digital certificates
  - Backup/restore of private keys

Specifications
The primary specifications of the TURBOMISTY
are given in Table 1.

Table 1 TURBOMISTY Specifications

PCI bus 32bit, 33MHz synchronous bus to
PCI 2.1 standards

Size (W x Dmm) Full-size PCI board
106.7 x 312

Compatible with FIPS 140-1 Level 3

Interface PKCS #11 Ver. 2.01

Slots per board 8

Max. number of boards (slots) 4 (32)

Private keys per board 32

Certificates per board 64

Algorithms
RSA (512~2048)
MISTY, DES, Triple DES
MD5, SHA-1

Random number generator Hardware

Compatible OS
Windows NT/2000
Solaris 7
HP-UX11.0 (planned)

Connectivity
At present, connectivity and interoperability of
the TURBOMISTY has been verified for the fol-
lowing products:

ASSURETRANSACTION. AssureTransaction is
the digital signature messaging system (DSMS)
of Entegrity Corp., and is authorized as one com-
ponent of the Identrus Financial System Certifi-
cation System.

Connectivity between TURBOMISTY and
AssureTransaction has been confirmed, certify-
ing TURBOMISTY as an Entegrity Corp. certi-
fied hardware security module (HSM) along with
products of foreign vendors such as Chrysalis
Corp. and nCipher Corp.

IPLANET WEB SERVER. The iPlanet Web Server
private key can be controlled by TURBOMISTY
through storing them in the TURBOMISTY
PKCS #11 library.

As electronic transaction systems and e-business
become ubiquitous, hardware by which to control
the keys that are central to the security of sys-
tems is expected to become increasingly impor-
tant. The corporation is committed to remaining
in the forefront of all such efforts. ❑
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